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Sharp quantum phase transitions typically require a large system with many particles. Here we show

that, for a frustrated fully connected Ising spin network represented by trapped atomic ions, the

competition between different spin orders leads to rich phase transitions whose sharpness scales

exponentially with the number of spins. This unusual finite-size scaling behavior opens up the possibility

of observing sharp quantum phase transitions in a system of just a few trapped ion spins.

DOI: 10.1103/PhysRevLett.106.230402 PACS numbers: 05.30.Rt, 03.67.Lx, 37.10.Ty, 75.10.Jm

Quantum simulators are motivated by the promise of
gaining insight into many-body quantum systems such as
high-TC superconductors or complex arrangements of in-
teracting spins. Cold atomic systems form a promising
platform for quantum simulation, as the interactions be-
tween particles can be under great control. A good example
is a collection of trapped and laser-cooled atomic ions,
each representing an effective spin that can be made to
interact with all the others by modulating the Coulomb
interaction between ions. By applying spin-dependent
optical dipole forces, it has been shown that a crystal of
ions provides an ideal platform to simulate intractable
interacting spin models [1,2]. Following this proposal,
recent experiments have simulated quantum magnetism
with a few ions [3–6]. For three or more ions, the long-
range coupling between the spins can provide frustrated
interaction patterns or competition between various spin
orders and offer an exceptional opportunity to study quan-
tum phases and transitions [5,6]. A quantum phase tran-
sition is defined as a singular change of the ground-state
energy as one continuously varies a control parameter in
the Hamiltonian, characterized by a level crossing or an
avoided level crossing that approaches a singularity as
the system size increases [7]. The observation of a
quantum phase transition typically requires a large system
with many particles, as the width (sharpness) of a
quantum phase transition usually scales with 1=N, the
inverse of the number of particles [7]. With such slow
finite-size scaling laws, small networks of trapped ions
realized in current experiments (N & 20) are not expected
to exhibit sharp transitions between distinct quantum
phases.

In this Letter, we show the surprising result that sharp
phase transitions can indeed be observed with just a
few atomic ions. This is due to unusual finite-size scaling
laws in this frustrated spin network, where the sharpness
of some phase transitions scales exponentially instead
of linearly with 1=N. By controlling a single experi-
mental parameter that determines the pattern of spin-spin

couplings between the ions, we show that the expected
ground state emerges from a delicate compromise between
the couplings. Frustration in the spin network leads to a
variety of spin orders, with the number of distinct phases
increasing rapidly with the number of ions. We construct
the complete phase diagram for small spin networks real-
izable with the current technology. The sharp phase tran-
sition is characterized in detail with an explanation of its
unusual finite-size scaling behavior.
We consider a small crystal of ions confined in a one-

dimensional harmonic trap. The spin states of the ions are
represented by two internal states, referred as j"i and j#i,
and the effective spin-spin interaction between the ions
is induced with off-resonant bichromatic laser beams
[1,3–5]. The ion-laser coupling Hamiltonian, written in the
rotating frame, has the form H ¼ P

n½@�cosð�kxn þ�tÞ
�z

n þ B�x
n� [8], where� is a Raman Rabi frequency, �k is

the wave vector difference between the two Raman beams
(which is assumed to be along the radial direction x̂),
� is the beat note or detuning between the two laser beams,
�z

n and �x
n are Pauli matrices describing the spin of the

nth ion, and B is an effective magnetic field induced by
radiation that coherently flips the spins. In the rotating
frame, the radial coordinate xn is expanded in terms of the

transverse phonon modes ak as xn ¼ P
kb

k
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ð2m!kÞ

p

ðayk ei!kt þ ake
�i!ktÞ, where m is the atomic mass, !k is

the eigenfrequency of the kth normal mode of the ion
crystal, and bkn is the eigenmode transformation matrix.
We use transverse phonon modes because they can
more easily be scaled up to large systems [5,9]. Under

the Lamb-Dicke criterion �n;k � bkn�k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ð2m!kÞ

p � 1,
the Hamiltonian H is simplified to H¼�@�

P
nk�n;k

sinð�tÞ�z
nðayk ei!ktþake

�i!ktÞþB
P

n�
x
n.

If we assume that the laser detuning � is not resonant
with any phonon mode with the condition j!k ��j �
�n;k� satisfied for all n modes k, the probability of excit-

ing any phonon mode j��n;kb
k
n=2ð!k ��Þj2 is negligible.

We can therefore adiabatically eliminate the phonon modes
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and arrive at the following effective spin-spin coupling
Hamiltonian [6,10]:

Hs ¼
X
m;n

Jmn�
z
m�

z
n þ B

X
n

�x
n; (1)

where the coefficients

Jmn ¼ ð@��kÞ2
2m

X
k

bkmb
k
n

�2 �!2
k

: (2)

This Ising Hamiltonian is a pillar of many-body physics,
and its properties have been exhaustively studied under
various conditions [7]. For instance, the ground state of the
Ising Hamiltonian is well understood when the coupling
coefficients Jmn are uniform or nonzero only for nearest
neighbors. However, here we have an extended Ising net-
work where the coupling coefficients Jmn are inhomoge-
neous (in both magnitude and sign) and extend over a long
range [11]. The strong competition among these interac-
tion terms (even with B ¼ 0) will generally lead to highly
frustrated ground states where individual bonds are com-
promised in order to reach a global energy minimum.
For arbitrary coupling coefficients Jmn, the determination
of the ground-state energy of Hamiltonian (1) generally
belongs to the complexity class of nondeterministic poly-
nomial time complete problems [12], meaning that calcu-
lating attributes of the system becomes intractable when
the system size is scaled up.

We consider the case where the coupling coefficients
Jmn are controlled by a single experimental parameter, the
laser detuning� [4–6]. To determine Jmn from detuning�
with the formula (2), we need the normal mode eigenfunc-
tion bkn. This is obtained by finding the equilibrium posi-
tions for a given number of ions in a harmonic trap and then
diagonalizing the Coulomb interaction Hamiltonian ex-
panded around the ions’ equilibrium positions. With a
single control parameter �, we are not able to program
arbitrary coupling coefficients Jmn. However, the interac-
tion pattern is sufficiently complex to allow frustrated
ground-state configurations and rich phase transitions. To
illustrate this, we show in Fig. 1(a) coupling pattern for
N ¼ 7 ions and its associated ground-state spin configura-
tion at B ¼ 0. The coupling pattern is represented by a
graph where the color and the thickness of each edge
represents, respectively, the sign (ferromagnetic or anti-
ferromagnetic) and the magnitude of the coupling. In
Fig. 1(a), we find a ferromagnetically ordered ground state
with all the spins pointing to the same direction. However,
in this ferromagnetic state, some of the bonds, such as the
strong antiferromagnetic bond between ions 1 and 7, are
compromised, and, due to this frustration, the ground-state
spin configuration is very sensitive to the strength of the
coupling. If we adjust the detuning� by a small fraction of
the trap frequency, the ferromagnetic bonds of the ion pairs
(1, 5) and (3, 7) are slightly weakened [see Fig. 1(b)], and
the antiferromagnetic bond (1, 7) dominates and flips the
spin direction of the entire left (or right) half of the ion

crystal. This is a phase transition from ferromagnetic order
to a ‘‘kink’’ order, with a kink in the spin direction between
the 4th and 5th ions counting from either the left or the
right side.
To show the rich phase diagram for this system, in

Fig. 2(a) we list all different spin phases at B ¼ 0 for a
small Ising network with 3, 5, 7, and 9 ions obtained
through exact diagonalization of the Hamiltonian while
tuning up the detuning �. For an odd number of ions, the
phase diagram is more interesting and features a larger
variety of spin orders, because the left-right reflection
symmetry in a linear ion crystal can be spontaneously
broken. Each phase is characterized by a spin order (de-
noted with a binary string where 0 and 1 correspond to "
and # spin, respectively) which gives one of the ground-
state spin configurations. The Ising Hamiltonian (1) fea-
tures a reflection symmetry and an intrinsic Z2 symmetry
with respect to a global spin flip. The spin order breaks the
Ising symmetry, so each phase is at least twofold degener-
ate. If the spin order also breaks the reflection symmetry,
the corresponding ground state is fourfold degenerate. For
instance, for the phase denoted by the spin order 01001, the
four degenerate ground states are j#"##"i, j"#""#i, j"##"#i, and
j#""#"i. When� is tuned crossing a phonon mode [numbers
in parentheses in Fig. 2(a)], the spin order changes as
expected, but this is not a conventional phase transition
as the parameters Jmn change discontinuously in the
Hamiltonian (1). However, when � varies within two
phonon modes, all the parameters Jmn are analytic func-
tions of �, yet the spin order can still change abruptly,
signaling a phase transition. The frequency of this type of
intermode phase transition increases rapidly with the ion
number: There is one such transition for a three-ion chain
and 12 such transitions in a nine-ion crystal. Another
notable feature from Fig. 2(a) is that there is typically no
phase transition when � varies from an even mode (2nd,
4th, . . ., phonon modes; counting from the lowest phonon
frequency) to an odd mode (3rd, 5th, . . .). In such regions,
the spin order has a reflection symmetry. This suggests that
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FIG. 1 (color online). Illustration of spin orders in two frus-
trated Ising networks with competing long-range interaction for
N ¼ 7 ions. (a) Ferromagnetic order with detuning �=!? ¼
0:9886. (b) Kink order with �=!? ¼ 0:9900. The thickness of
the edge in the graph represents the strength of each coupling.
Positive (antiferromagnetic) spin couplings are indicated in red,
while negative (ferromagnetic) couplings are indicated in black.
[Throughout this paper, we set the trap aspect ratio (transverse:
axial) !?=!k ¼ 10 [4–6].]
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a spin order with reflection symmetry may be more stable
in energy and does not easily yield to other spin configu-
rations. This observation is consistent with the fact that, for
an even number of ions, there are many fewer intermode
phase transitions, as the spin order in these cases has a
reflection symmetry.

As we add a transverse B field to the Hamiltonian, the

spins will gradually become polarized along the x direction

along B. In Fig. 2(b), we plot the average polarization

hPn�
x
ni=N as a function of the field B (in the unit of the

average Jmn defined by �J �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m�njJmnj2=½NðN � 1Þ�
q

)

for N ¼ 7 ions in a small region of the detuning �. We

find that the system is easily polarized if it lies at the

critical point between two different spin orders given by

the Ising couplings. But near the center of a spin phase, the

spin order is more robust and can persist under a finite B,

eventually yielding to the polarized phase as B increases

through the Ising-type transition (which becomes a broad

crossover for this finite system).
With B ¼ 0, the transition between different spin orders

is sharp as it is characterized by a level crossing for the

ground state of the Hamiltonian (1). When we turn on a

finite B field, the system shows only avoided level cross-

ings in its ground state, and typically the sharp phase
transition at B ¼ 0 should be replaced by a broad crossover
for this small system, similar to the Ising type of transition

discussed above. Interestingly, this is not always the case.

We find that for some transition, even at a finite B, the
boundary between different spin phases remains very sharp

(as characterized by the transition width defined in Fig. 4).

To see this clearly, we look at a particular example: For N
ions when N is odd [13], numerical diagonalization shows

there is a unique spin phase transition in the region be-

tween the 2nd and 3rd highest modes. A schematic phase

diagram for this region is presented in Fig. 3(a). At B ¼ 0,

FIG. 2 (color online). (a) Ground-state phases at B ¼ 0 characterized by the corresponding spin orders for N ¼ 3; 5; 7; 9 ions. The
transition points are positioned by the values of �, whereas the phonon mode frequencies are presented in parentheses. (b) Average
polarization h�Gj

P
n�

x
nj�Gi=N for N ¼ 7 ions at finite fields B with j�Gi denoting the ground state. The right figure is a close-up

near the critical point.

FIG. 3 (color online). (a) The schematic phase diagrams for odd numbers of ions in the region between the 2nd and 3rd highest modes.
For a small number of ions, the solid line represents a sharp transition, whereas the dashed lines represent a continuous crossover to the
polarized state. (b),(c) The calculated theoretical phase diagrams for (b) N ¼ 5 and (c) N ¼ 9 ions. Color shows the order parameter
defined byPFM � PK, wherePFM � P

s¼";#jhs; s; . . . ; sj�Gij2 andPK � P
s¼";#jhsðNþ1=2Þ; �sðN�1=2Þj�Gij2 þ jhsðN�1=2Þ; �sðNþ1=2Þj�Gij2 are

the projection probabilities of the ground state j�Gi of the system to the Hilbert subspace with the ferromagnetic and the kink orders,
respectively. (jsðmÞ; �sðN�mÞi � �m

i¼1jsii�N
i¼mþ1j�sii, where s denotes the spin orientation with �" �# and vice versa.)
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we have a ferromagnetic phase on the left side which is
doubly degenerated and a kink phase on the right side
which is fourfold degenerate. At finite B, these two spin
orders remain robust in a range of B, before eventually
yielding to a polarized phase for a large B field through a
crossover. In Figs. 3(b) and 3(c), the transition between the
ferromagnetic (red region) and the kink (blue region)
phases can be witnessed by the emergence of the sharp
boundary when the number of particles is moderately
increased from 5 to 9. It is also interesting to note that
the transition boundary between these two phases has a
slope with the B axis, so one can cross this phase transition
by tuning either the detuning � or the field B.

To characterize sharpness of the transition between the
ferromagnetic phase and the kink phase, in Fig. 4(a) we
look at energies of the four lowest eigenstates of the
Hamiltonian (1) as functions of B or � across the phase
boundary. While the ground-state energy is a smooth func-
tion of � at a finite B, the first and second excited states
have a level crossing. As the number of ions N increases,
the ground-state energy quickly approaches the level cross-
ing point with the energy gap �E shown in Fig. 4(a)
shrinking exponentially with N, signaling a sharp phase
transition already at a modest ion number. The transition
width W defined in Fig. 4 is apparently proportional to the
energy gap �E, and in Fig. 4(b),�E is shown as a function
of the ion numberN, which can be well fit with the formula

�E ’ �JðB= �JÞðN�1Þ=2. The exponential shrinking of �E
with N can be intuitively understood as follows: When
B � �J, we can treat the term B

P
n�

x
n as a perturbation in

the Hamiltonian (1). For each application of B
P

n�
x
n, we

can only flip the direction of one spin. As the ferromagnetic
state and the kink state have ðN � 1Þ=2 spins taking oppo-
site directions, the two states need to be connected through
ðN � 1Þ=2th order perturbation, and thus the energy gap is

proportional to ðB= �JÞðN�1Þ=2.
As one can see from Fig. 2(a), the typical spacings

between the transverse modes are very insensitive to the
ion number N under a fixed aspect ratio !?=!k that is

large enough to stabilize the ion chain. For instance, the
spacing between the highest and the second highest modes
can be roughly estimated by �!12 ’ !2

k=ð2!?Þ, which is

clearly independent of N. To observe the sharp phase
transition predicted in Fig. 3, we need a resolution in
detuning � about the order of �5� 10�4!? ¼ 2:5 kHz
under a typical value of !? � 2�� 5 MHz. This is fea-
sible with current technology where the detuning can be
controlled very precisely. The width of transition defined
in Fig. 4 shrinks very rapidly with N: For instance, with
N ¼ 9 and B= �J ¼ 0:05, the width has been reduced to
W � 3� 10�6�!12, so it is possible to observe a very
sharp phase transition with a few ions already.
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FIG. 4 (color online). (a) The structure of the lowest four
energy levels around the sharp ferromagnetic-kink phase tran-
sition. The two lowest states have a ferromagnetic (kink) order
on the left (right) side. The transition width W is defined as the
distance between two points A1 and A2 located in the ferro-
magnetic (kink) phase, respectively, with the order parameter
PFM � PK defined in the Fig. 3 caption changing from 0.71
(at A1) to �0:68 (at A2) for N ¼ 9 and B= �J ¼ 0:05. (b) Data
points �E (in log scale) as a function of the ion number N and
magnetic field B, on top of a solid line representing the relation
� � logð�E= �JÞ=½N�1

2 logðB= �JÞ� ¼ 1. For each N, those dots

correspond to B= �J increasing from 0.005 to 0.05 with a step
size of 0.005. The largest deviation in this figure occurs at
N ¼ 11, B= �J ¼ 0:05, where �� 1 ¼ 3:4%.
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